ClimateChangePost

Wildfires increase in Europe from north to south by a factor 10!

August 29th, 2016

By Wilfried ten Brinke

This longread is based on a large number of scienti要c sources assembled by the ClimateChangePost. Check out the forest 至re pages on www.climatechangepost.com for more details.

This longread is the second of three articles on wildfire risk under climate change in Europe. The first one focused on southern Europe. This second article compares wildfire risk in northern Europe to that in the south. The third article will be on measures and strategies to fight wildfires and limit the increasing wildfire risk.

Wildfire risk in northern Europe is relatively low

Wildftre risk in northem Europe is much less than in southem Europe. In northem Europe, wildftres are rare: the percentage of forestland bumt annually is less than 0.05%. For comparison: during 1991-2002 each year 0.55\% of the total forest area of Spain bumt. Also the number of ftres is much less. Finland is Europe's most heavily forested country, with 75\% of its land area covered by forests. During the past 3 decades, the average number of forest
ftres has been about 1000 ftres annually, with an average bumt area of 0.5 ha per fre. Again for comparison: the number of wildftres in Spain and Italy was more than 10 times as high. The total annually burnt area of forest in Sweden has not exceeded 5000 ha since 1950s for most years. In northem European countries to the south of Scandinavia similar 'low' numbers for annually bumt forest area have been reported: in Germany in the year of the heat wave of 2003, the area of burnt forest was 'only' 1315 ha. Wildftres in Italy on the other hand destroy more than 50,000 ha of wood each year. Even in much smaller countries in southem Europe, such as Albania and Croatia, the total area of forest destroyed by fre annually far exceeds the numbers that have been reported for countries in the north.

Russia on fire in 2010, an exception to the rule

In general wildftres in northem Europe so far haven't been that destructive. The ftres in Russia in 2010 are an exception to the rule. In the summer of 2010, westem Russia experienced an intense heat wave from early July through to the ftrst half of August, having already been subject to signiftcantly above average temperatures in the previous two months. In Moscow, temperatures were $7.6^{\circ} \mathrm{C}$ above average for July, making it the hottest July on record by $2^{\circ} \mathrm{C}$. On 29th July, Moscow recorded its hottest ever temperature of $38.2^{\circ} \mathrm{C}$, the highest since the records began 130 years ago. There were also 33 consecutive days above $30^{\circ} \mathrm{C}$ in the city. Drought, high temperatures, and ftres destroyed one-third of Russia's $\mathbf{2 0 1 0}$ grain crop. The ftres, drought, and heat affected over $\mathbf{1 3 . 3}$ million hectares cropland in 41 Russian provinces. Estimates of total economic losses due to the forest fres vary from $\mathbf{\$ 1 5}$ billion to $\mathbf{\$ 3 0 0}$ billion. The latter number also includes the loss of timber. Around 14,000 deaths resulted from the summer heat, with half of them in and around Moscow alone.

Future projections: wildfire risk increases

Wildftre risk in Scandinavia hasn't changed much over the last decades. During the 20th century, there has been no signiftcant increasing or decreasing tendency in the climatedriven forest fre danger; summertime temperatures have increased but no signiftcant changes in summertime precipitation have been observed yet. Wildftre risk will increase, though, in the course of this century, as the climate becomes drier, wamer and windier, and drought spells occur more frequent.

Compared with 1961-1990 average summertime mean temperature in Finland rises by 1.5 ${ }^{\circ} \mathrm{C}$ for 2010-2029 and by $4^{\circ} \mathrm{C}$ for 2080-2099, and precipitation increases for most of the country, according to model results under a scenario of intermediate climate change. As a result, the probability of forest ftre danger days in the forest ftre 'high season', i.e. June to August, would increase by 56-75\% for 2010-2029 and 71-91\% for 2080-2099. On average, the number of forest ftre danger days was projected to increase by 1 day for 2010 2029 and by 7 to 10 days for 2080-2099, compared with 1961-1990. The uncertainty in this number is mainly due to uncertainty in the sign and magnitude of future precipitation change. The actual number of ftres ignited, however, also strongly depends on socioeconomical changes.

Besides a projected increase of the number of forest fre danger days during June to August, the forest ftre season probably will start earlier as well due to a projected earlier end of the snow season in the boreal environment. Forest fre activity starts soon after snowmelt, when organic debris from the previous growing season is exposed and dried. A shift of fre activity towards the spring has already been observed.

Wildftre risk may change quite differently in the southern and northem parts of Scandinavia, though. According to model results under a scenario of intermediate climate change, southem Sweden is projected to become a more fre-prone region with an increased number of days with a high ftre risk. Northem Sweden on the other hand may be a ftre-resistant region in the future climate (until 2100) with less days with high ftre risk than today.

Wildftre risk will probably also increase in northem European countries to the south of Scandinavia, such as Germany, the United Kingdom, and Poland.

Difference between north and south also manifest in the Alps

The difference in wildftre risk between northem and southem Europe has also been observed in the Alps. So far, wildftres do not constitute a signiftcant hazard in the central and northem parts of the Alps, while on the southem side they are more common even if fre number and bumt area are low compared to the neighbouring Mediterranean area. In southem Swiss Alps ftre risk due to drought events increased over the 1971-2005 period.

The potential increase of summer stoms could lead to an increase in the risk of wildftres. In regions like the dry valleys of the canton of Valais (Switzerland), the drought-induced dieback of pines enhances the amount of dead wood in forests and therefore the risk of wildfres. According to model results on the future impact of climate change the difference in wildftre risk between northem and southem parts of the Alps will sustain at least until 2050, but probably also in the second half of this century.

Follow-up on this longread

What measures are needed to ftght wildftres that seem to get out of control every now and then? What strategies can be used to limit the increasing wildftre risk? These questions will be answered in a follow-up article on the ClimateChangePost next week.

Source: www.climatechangepost.com

Photo: John Dal (www.sfickr.com)

